Finite addition theorems, I

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Addition Theorems via Continued Fractions

We show connections between a special type of addition formulas and a theorem of Stieltjes and Rogers. We use different techniques to derive the desirable addition formulas. We apply our approach to derive special addition theorems for Bessel functions and confluent hypergeometric functions. We also derive several addition theorems for basic hypergeometric functions. Applications to the evaluat...

متن کامل

Addition Theorems in Acyclic Semigroups

We give a necessary and sufficient condition on a given family A of finite subsets of integers for the Cauchy-Davenport inequality |A+ B| ≥ |A|+ |B| − 1, to hold for any family B of finite subsets of integers. We also describe the extremal families for this inequality. We prove this result in the general context of acyclic semigroups, which contain also the semigroup of sequences of elements in...

متن کامل

Finite multiplicity theorems

We find upper and lower bounds of the multiplicities of irreducible admissible representations π of a semisimple Lie group G occurring in the induced representations IndH τ from irreducible representations τ of a closed subgroup H. As corollaries, we establish geometric criteria for finiteness of the dimension of HomG(π, Ind G H τ) (induction) and of HomH(π|H , τ) (restriction) by means of the ...

متن کامل

On linear versions of some addition theorems

Let K ⊂ L be a field extension. Given K-subspaces A,B of L, we study the subspace 〈AB〉 spanned by the product set AB = {ab | a ∈ A, b ∈ B}. We obtain some lower bounds on dimK〈AB〉 and dimK〈B 〉 in terms of dimK A, dimK B and n. This is achieved by establishing linear versions of constructions and results in additive number theory mainly due to Kemperman and Olson.

متن کامل

Bertini Theorems over Finite Fields

Let X be a smooth quasiprojective subscheme of P of dimension m ≥ 0 over Fq. Then there exist homogeneous polynomials f over Fq for which the intersection of X and the hypersurface f = 0 is smooth. In fact, the set of such f has a positive density, equal to ζX(m + 1) −1, where ζX(s) = ZX(q −s) is the zeta function of X. An analogue for regular quasiprojective schemes over Z is proved, assuming ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1989

ISSN: 0022-314X

DOI: 10.1016/0022-314x(89)90102-9